Skip to content

q

The q plugin registers a q dataset type that makes it a bit easier to extract data from a QIX hypercube. It also contains a brush helper that can be used to find appropriate selections in the underlying data engine.

Installation

npm install picasso-plugin-q

Register plugin

import picassoQ from 'picasso-plugin-q';
import picasso from 'picasso.js';

picasso.use(picassoQ); // register

q dataset

This dataset type understands the QIX hypercube format and its internals, making it a bit easier to traverse and extract values from an otherwise complex structure.

Usage

const ds = picasso.data('q')({
  key: 'qHyperCube', // path to the hypercube from the layout
  data: layout.qHyperCube,
  config: {
    /* ... */
  },
});

Dimensions, measures, attribute expressions and attribute dimensions are all recognized as fields and can be found using either the path or the title of the field:

const f = ds.field('Sales');
const ff = ds.field('qDimensionInfo/1/qAttrDimInfo/2');

Config

The config object allows for further configuration:

  • config: <object>
    • localeInfo: <[LocaleInfo]> - App locale info used for formatting.
    • virtualFields: <Array<object>> - Convenience config to alias fields. Experimental.
      • key: <string> - Identifier for the field.
      • from: <string> - Source field identifier.
      • override: <object> - Override accessor inherited from source field.
        • value: <function> - Value accessor.
        • label: <function> - Label accessor.
const ds = picasso.data('q')({
  key: 'qHyperCube',
  data: layout.qHyperCube,
  config: {
    virtualFields: [
      {
        key: 'surpriseMe',
        from: 'qMeasureInfo/0',
        override: {
          value: (v) => v.qValue * Math.random(),
        },
      },
    ],
  },
});

ds.field('surpriseMe').items(); // -> array of random numbers multiplied with the value from first measure

Extracting data values

Assuming you have a hypercube containing dimensions Year and Month, a measure Sales and an attribute expression on the first dimension containing color values:

// hypercube stub
{
  qDimensionInfo: [
    { qFallbackTitle: 'Year', qAttrDimInfo: [{ qFallbackTitle: 'color' }, /* ... */], /* ... */ },
    { qFallbackTitle: 'Month', /* ... */  }
  ],
  qMeasureInfo: [
    { qFallbackTitle: '# products', /* ... */  }
  ]
}

In a straight hypercube the qMatrix might look like this:

[
  [
    { "qText": "2011", "qNum": 2011, "qElemNumber": 0, "qState": "O", "qAttrExps": { "qValues": [{"qText": "red", "qNum": "NaN" }] } },
    { "qText": "Jan", "qNum": 1, "qElemNumber": 0, "qState": "S",  "qAttrDims": { "qValues": [{ "qText": "Jan", "qElemNo": 0 }] } },
    { "qText": "61", "qNum": 61, "qElemNumber": 0, "qState": "L" }
  ],
  [
    { "qText": "2011", "qNum": 2011, "qElemNumber": 0, "qState": "O", "qAttrExps": { "qValues": [{"qText": "blue", "qNum": "NaN" }] } },
    { "qText": "Feb", "qNum": 2, "qElemNumber": 1, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Feb", "qElemNo": 1 }] } },
    { "qText": "62", "qNum": 62, "qElemNumber": 0, "qState": "L" }
  ],
  [
    { "qText": "2012","qNum": 2012, "qElemNumber": 1, "qState": "O", "qAttrExps": { "qValues": [{"qText": "red", "qNum": "NaN" }] } },
    { "qText": "Jan", "qNum": 1, "qElemNumber": 0, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Jan", "qElemNo": 0}] } },
    { "qText": "88", "qNum": 88, "qElemNumber": 0, "qState": "L" }
  ],
  [
    { "qText": "2012", "qNum": 2012, "qElemNumber": 1, "qState": "O", "qAttrExps": { "qValues": [{"qText": "blue", "qNum": "NaN" }] } },
    { "qText": "Feb", "qNum": 2, "qElemNumber": 1, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Feb","qElemNo": 1}] } },
    { "qText": "76", "qNum": 76, "qElemNumber": 0, "qState": "L" }
  ]

You can extract the unique Month values using:

ds.extract({
  field: 'Month',
  trackBy: (v) => v.qElemNumber,
});

// output
[
  { value: 0, label: 'Jan', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' } },
  { value: 1, label: 'Feb', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' } },
];

and attach aggregated properties on each item using props:

ds.extract({
  field: 'Month',
  trackBy: v => v.qElemNumber
  props: {
    years: { field: 'Year', value: v => v.qText, reduce: values => values.join(' - ') },
    color: { field: 'color', value: v => v.qText },
      }
});

// output
[
  {
    value: 0, label: 'Jan', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' },
    years: { value: '2011 - 2012', source: { key: 'qHyperCube', field: 'qDimensionInfo/0' } }
    color: { value: 'red', source: { key: 'qHyperCube', field: 'qDimensionInfo/0/qAttrExprInfo/0' } }
      },
  {
    value: 1, label: 'Feb', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' },
    years: { value: '2011 - 2012', source: { key: 'qHyperCube', field: 'qDimensionInfo/0' } }
    color: { value: 'blue', source: { key: 'qHyperCube', field: 'qDimensionInfo/0/qAttrExprInfo/0' } }
      }
]

The default value accessor for a field depends on the field type and the qMode property of the hypercube:

  • For measures and attribute expressions: cell => cell.qNum or cell => cell.qValue
  • For dimensions and attribute dimensions: cell => cell.qElemNumber or cell => cell.qElemNo

The default reduce function is avg for measures and first for dimensions.

QIX selections helper

The QIX selections helper provides a mapping from brushed data points to suitable QIX selections.

By dimension value

Brushing dimension values is done by adding the value of qElemNumber to the brush, and providing the path to the relevant dimension:

const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/2', 4);
b.addValue('qHyperCube/qDimensionInfo/2', 7);

Calling picassoQ.selections with this instance generates relevant QIX methods and parameters to apply a selection to:

const selection = picassoQ.selections(b)[0];
// {
//   method: 'selectHyperCubeValues',
//   params: [
//     '/qHyperCubeDef', // path to hypercube to apply selection to
//     2, // dimension column
//     [4, 7], // qElemNumbers
//     false
//   ]
// }

The selection can then be applied to a QIX model:

model[selection.method](...selection.params);

By measure range

Brushing measure ranges:

const b = chart.brush('selection');
b.addRange('qHyperCube/qMeasureInfo/2', { min: 13, max: 35 });

const selection = picassoQ.selections(b)[0];
// {
//   method: 'rangeSelectHyperCubeValues',
//   params: ['/qHyperCubeDef', [
//     {
//       qMeasureIx: 2,
//       qRange: { qMin: 13, qMax: 35, qMinIncEq: true, qMaxInclEq: true }
//     }
//   ]]
// }

By dimension range

Brushing dimension ranges:

const b = chart.brush('selection');
b.addRange('qHyperCube/qDimensionInfo/1', { min: 13, max: 35 });

const selection = picassoQ.selections(b)[0];
// {
//   method: 'selectHyperCubeContinuousRange',
//   params: ['/qHyperCubeDef', [
//     {
//       qDimIx: 1,
//       qRange: { qMin: 13, qMax: 35, qMinIncEq: true, qMaxInclEq: false }
//     }
//   ]]
// }

By row indices

Brushing by table row index and column:

const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/1', 10);
b.addValue('qHyperCube/qDimensionInfo/1', 13);
b.addValue('qHyperCube/qDimensionInfo/0', 11);
b.addValue('qHyperCube/qDimensionInfo/0', 17);

Here rows 10 and 13 have been brushed on dimension 1, and rows 11 and 17 on dimension 0. To extract the relevant information, byCells is enabled:

const selection = picassoQ.selections(b, { byCells: true })[0];
// {
//   method: 'selectHyperCubeCells',
//   params: [
//     '/qHyperCubeDef',
//     [10, 13], // row indices in hypercube
//     [1, 0] // column indices in hypercube
//   ]
// }

Row indices are used from the first dimension that adds a value to a brush, qDimensionInfo/1, in this case. To use values from another dimension, primarySource should be set:

const selection = picassoQ.selections(b, {
  byCells: true,
  primarySource: 'qHyperCube/qDimensionInfo/0',
})[0];
// {
//   method: 'selectHyperCubeCells',
//   params: [
//     '/qHyperCubeDef',
//     [11, 17], // row indices in hypercube
//     [1, 0] // column indices in hypercube
//   ]
// }

It is also possible to get a selectPivotCells call by providing the layout:

const selection = picassoQ.selections(b, { byCells: true }, layout)[0];
// {
//   method: 'selectPivotCells',
//   params: [
//     '/qHyperCubeDef',
//     [{qType: 'L', qCol: 1, qRow: 10}, {qType: 'L', qCol: 1, qRow: 13}], // Array of NxSelectionCell for pivot data
//
//   ]
// }

By attribute dimension

Brush on attribute dimension values:

const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/2/qAttrDimInfo/3', 6);
b.addValue('qHyperCube/qDimensionInfo/2/qAttrDimInfo/3', 9);

const selection = picassoQ.selections(b)[0];
// {
//   method: 'selectHyperCubeValues',
//   params: [
//     '/qHyperCubeDef/qDimensions/2/qAttributeDimensions/3', // path to hypercube to apply selection to
//     0, // dimension column in attribute dimension table
//     [6, 9], // qElemNumbers
//     false
//   ]
// }

By attribute expression range

Brush on attribute expression range:

const b = chart.brush('selection');
b.addRange('qHyperCube/qMeasureInfo/1/qAttrExprInfo/2', { min: 11, max: 21 });

QIX selections on attribute expressions are similar to selections on measureranges. In this case however, the index of the measure is derived from the number of measures and attribute expressions that exist in the hypercube. Therefore, to calculate the index, layout containing the hypercube needs to be provided as a parameter:

const selection = picassoQ.selections(b, {}, layout)[0];
// {
//   method: 'rangeSelectHyperCubeValues',
//   params: ['/qHyperCubeDef', [
//     {
//       qMeasureIx: 7,
//       qRange: { qMin: 11, qMax: 21, qMinIncEq: true, qMaxInclEq: true }
//     }
//   ]]
// }

Assuming a layout of:

{
  qHyperCube: {
    qDimensionInfo: [
      { qAttrExprInfo: [{}] }
    ],
    qMeasureInfo: [
      { qAttrExprInfo: [{}, {}] },
      { qAttrExprInfo: [{}, {}, {/* this is the one */ }] }
    ]
  }
}

then qMeasureIx is calculated as follows:

  • number of measures: 2
  • total number of attribute expressions in all dimensions: 1
  • total number of attribute expressions in measures preceding the one specified: 2 (from first measure)
  • the actual index of the specified attribute expression: 2

which results in 2 + 1 + 2 + 2 = 7

Formatting

The q plugin comes bundled with a formatter attached the to data field. To use it, no configuration other then using the q-dataset is required.

Was this page helpful?