q
The q
plugin registers a q
dataset type that makes it a bit easier to extract
data from a QIX hypercube. It also contains a brush helper that can be used to
find appropriate selections in the underlying data engine.
Installation
npm install picasso-plugin-q
Register plugin
import picassoQ from 'picasso-plugin-q';
import picasso from 'picasso.js';
picasso.use(picassoQ); // register
q
dataset
This dataset type understands the QIX hypercube format and its internals, making it a bit easier to traverse and extract values from an otherwise complex structure.
Usage
const ds = picasso.data('q')({
key: 'qHyperCube', // path to the hypercube from the layout
data: layout.qHyperCube,
config: {
/* ... */
},
});
Dimensions, measures, attribute expressions and attribute dimensions are all recognized as fields and can be found using either the path or the title of the field:
const f = ds.field('Sales');
const ff = ds.field('qDimensionInfo/1/qAttrDimInfo/2');
Config
The config
object allows for further configuration:
config
:<object>
localeInfo
:<[LocaleInfo]>
- App locale info used for formatting.virtualFields
:<Array<object>>
- Convenience config to alias fields. Experimental.key
:<string>
- Identifier for the field.from
:<string>
- Source field identifier.override
:<object>
- Override accessor inherited from source field.value
:<function>
- Value accessor.label
:<function>
- Label accessor.
const ds = picasso.data('q')({
key: 'qHyperCube',
data: layout.qHyperCube,
config: {
virtualFields: [
{
key: 'surpriseMe',
from: 'qMeasureInfo/0',
override: {
value: (v) => v.qValue * Math.random(),
},
},
],
},
});
ds.field('surpriseMe').items(); // -> array of random numbers multiplied with the value from first measure
Extracting data values
Assuming you have a hypercube containing dimensions Year and Month, a measure Sales and an attribute expression on the first dimension containing color values:
// hypercube stub
{
qDimensionInfo: [
{ qFallbackTitle: 'Year', qAttrDimInfo: [{ qFallbackTitle: 'color' }, /* ... */], /* ... */ },
{ qFallbackTitle: 'Month', /* ... */ }
],
qMeasureInfo: [
{ qFallbackTitle: '# products', /* ... */ }
]
}
In a straight hypercube the qMatrix
might look like this:
[
[
{ "qText": "2011", "qNum": 2011, "qElemNumber": 0, "qState": "O", "qAttrExps": { "qValues": [{"qText": "red", "qNum": "NaN" }] } },
{ "qText": "Jan", "qNum": 1, "qElemNumber": 0, "qState": "S", "qAttrDims": { "qValues": [{ "qText": "Jan", "qElemNo": 0 }] } },
{ "qText": "61", "qNum": 61, "qElemNumber": 0, "qState": "L" }
],
[
{ "qText": "2011", "qNum": 2011, "qElemNumber": 0, "qState": "O", "qAttrExps": { "qValues": [{"qText": "blue", "qNum": "NaN" }] } },
{ "qText": "Feb", "qNum": 2, "qElemNumber": 1, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Feb", "qElemNo": 1 }] } },
{ "qText": "62", "qNum": 62, "qElemNumber": 0, "qState": "L" }
],
[
{ "qText": "2012","qNum": 2012, "qElemNumber": 1, "qState": "O", "qAttrExps": { "qValues": [{"qText": "red", "qNum": "NaN" }] } },
{ "qText": "Jan", "qNum": 1, "qElemNumber": 0, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Jan", "qElemNo": 0}] } },
{ "qText": "88", "qNum": 88, "qElemNumber": 0, "qState": "L" }
],
[
{ "qText": "2012", "qNum": 2012, "qElemNumber": 1, "qState": "O", "qAttrExps": { "qValues": [{"qText": "blue", "qNum": "NaN" }] } },
{ "qText": "Feb", "qNum": 2, "qElemNumber": 1, "qState": "S", "qAttrDims": { "qValues": [{"qText": "Feb","qElemNo": 1}] } },
{ "qText": "76", "qNum": 76, "qElemNumber": 0, "qState": "L" }
]
You can extract the unique Month values using:
ds.extract({
field: 'Month',
trackBy: (v) => v.qElemNumber,
});
// output
[
{ value: 0, label: 'Jan', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' } },
{ value: 1, label: 'Feb', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' } },
];
and attach aggregated properties on each item using props
:
ds.extract({
field: 'Month',
trackBy: v => v.qElemNumber
props: {
years: { field: 'Year', value: v => v.qText, reduce: values => values.join(' - ') },
color: { field: 'color', value: v => v.qText },
}
});
// output
[
{
value: 0, label: 'Jan', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' },
years: { value: '2011 - 2012', source: { key: 'qHyperCube', field: 'qDimensionInfo/0' } }
color: { value: 'red', source: { key: 'qHyperCube', field: 'qDimensionInfo/0/qAttrExprInfo/0' } }
},
{
value: 1, label: 'Feb', source: { key: 'qHyperCube', field: 'qDimensionInfo/1' },
years: { value: '2011 - 2012', source: { key: 'qHyperCube', field: 'qDimensionInfo/0' } }
color: { value: 'blue', source: { key: 'qHyperCube', field: 'qDimensionInfo/0/qAttrExprInfo/0' } }
}
]
The default value
accessor for a field depends on the field type and the
qMode
property of the hypercube:
- For measures and attribute expressions:
cell => cell.qNum
orcell => cell.qValue
- For dimensions and attribute dimensions:
cell => cell.qElemNumber
orcell => cell.qElemNo
The default reduce
function is avg
for measures and first
for dimensions.
QIX selections helper
The QIX selections helper provides a mapping from brushed data points to suitable QIX selections.
By dimension value
Brushing dimension values is done by adding the value of qElemNumber
to the
brush, and providing the path to the relevant dimension:
const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/2', 4);
b.addValue('qHyperCube/qDimensionInfo/2', 7);
Calling picassoQ.selections
with this instance generates relevant QIX
methods and parameters to apply a selection to:
const selection = picassoQ.selections(b)[0];
// {
// method: 'selectHyperCubeValues',
// params: [
// '/qHyperCubeDef', // path to hypercube to apply selection to
// 2, // dimension column
// [4, 7], // qElemNumbers
// false
// ]
// }
The selection can then be applied to a QIX model:
model[selection.method](...selection.params);
By measure range
Brushing measure ranges:
const b = chart.brush('selection');
b.addRange('qHyperCube/qMeasureInfo/2', { min: 13, max: 35 });
const selection = picassoQ.selections(b)[0];
// {
// method: 'rangeSelectHyperCubeValues',
// params: ['/qHyperCubeDef', [
// {
// qMeasureIx: 2,
// qRange: { qMin: 13, qMax: 35, qMinIncEq: true, qMaxInclEq: true }
// }
// ]]
// }
By dimension range
Brushing dimension ranges:
const b = chart.brush('selection');
b.addRange('qHyperCube/qDimensionInfo/1', { min: 13, max: 35 });
const selection = picassoQ.selections(b)[0];
// {
// method: 'selectHyperCubeContinuousRange',
// params: ['/qHyperCubeDef', [
// {
// qDimIx: 1,
// qRange: { qMin: 13, qMax: 35, qMinIncEq: true, qMaxInclEq: false }
// }
// ]]
// }
By row indices
Brushing by table row index and column:
const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/1', 10);
b.addValue('qHyperCube/qDimensionInfo/1', 13);
b.addValue('qHyperCube/qDimensionInfo/0', 11);
b.addValue('qHyperCube/qDimensionInfo/0', 17);
Here rows 10
and 13
have been brushed on dimension 1
, and
rows 11
and 17
on dimension 0
. To extract the relevant information,
byCells
is enabled:
const selection = picassoQ.selections(b, { byCells: true })[0];
// {
// method: 'selectHyperCubeCells',
// params: [
// '/qHyperCubeDef',
// [10, 13], // row indices in hypercube
// [1, 0] // column indices in hypercube
// ]
// }
Row indices are used from the first dimension that adds a value to a brush,
qDimensionInfo/1
, in this case. To use values from another dimension,
primarySource
should be set:
const selection = picassoQ.selections(b, {
byCells: true,
primarySource: 'qHyperCube/qDimensionInfo/0',
})[0];
// {
// method: 'selectHyperCubeCells',
// params: [
// '/qHyperCubeDef',
// [11, 17], // row indices in hypercube
// [1, 0] // column indices in hypercube
// ]
// }
It is also possible to get a selectPivotCells call by providing the layout:
const selection = picassoQ.selections(b, { byCells: true }, layout)[0];
// {
// method: 'selectPivotCells',
// params: [
// '/qHyperCubeDef',
// [{qType: 'L', qCol: 1, qRow: 10}, {qType: 'L', qCol: 1, qRow: 13}], // Array of NxSelectionCell for pivot data
//
// ]
// }
By attribute dimension
Brush on attribute dimension values:
const b = chart.brush('selection');
b.addValue('qHyperCube/qDimensionInfo/2/qAttrDimInfo/3', 6);
b.addValue('qHyperCube/qDimensionInfo/2/qAttrDimInfo/3', 9);
const selection = picassoQ.selections(b)[0];
// {
// method: 'selectHyperCubeValues',
// params: [
// '/qHyperCubeDef/qDimensions/2/qAttributeDimensions/3', // path to hypercube to apply selection to
// 0, // dimension column in attribute dimension table
// [6, 9], // qElemNumbers
// false
// ]
// }
By attribute expression range
Brush on attribute expression range:
const b = chart.brush('selection');
b.addRange('qHyperCube/qMeasureInfo/1/qAttrExprInfo/2', { min: 11, max: 21 });
QIX selections on attribute expressions are similar to selections on
measureranges. In this case however, the index of the measure is derived from
the number of measures and attribute expressions that exist in the hypercube.
Therefore, to calculate the index, layout
containing the hypercube needs to be
provided as a parameter:
const selection = picassoQ.selections(b, {}, layout)[0];
// {
// method: 'rangeSelectHyperCubeValues',
// params: ['/qHyperCubeDef', [
// {
// qMeasureIx: 7,
// qRange: { qMin: 11, qMax: 21, qMinIncEq: true, qMaxInclEq: true }
// }
// ]]
// }
Assuming a layout
of:
{
qHyperCube: {
qDimensionInfo: [
{ qAttrExprInfo: [{}] }
],
qMeasureInfo: [
{ qAttrExprInfo: [{}, {}] },
{ qAttrExprInfo: [{}, {}, {/* this is the one */ }] }
]
}
}
then qMeasureIx
is calculated as follows:
- number of measures:
2
- total number of attribute expressions in all dimensions:
1
- total number of attribute expressions in measures preceding the one
specified:
2
(from first measure) - the actual index of the specified attribute expression:
2
which results in 2 + 1 + 2 + 2 = 7
Formatting
The q
plugin comes bundled with a formatter
attached the to data field
. To use it, no configuration other then using the
q-dataset is required.